| Bienvenido a CICESE
Datos Personales
Nombre:
Orlov Yury
Categoría:
INVESTIGADOR TITULAR
SNI:
INVESTIGADOR III
Departamento:
DEPARTAMENTO DE ELECTRÓNICA Y TELECOMUNICACIONES
División:
DIVISIÓN DE FÍSICA APLICADA
Correo:
yorlov@cicese.mx
Extensión:
25320
Proyectos
Estabilidad y estabilización en tiempo prescrito
Laboratorios
Laboratorio de Control Robusto
Hay 112 publicaciones.

Año

Autores / Publicación

2024

Mayr, P., Orlov, Y., Pisano, A., Koch, S., & Reichhartinger, M. (2024). Adaptive sliding mode boundary control of a perturbed diffusion process. International Journal of Robust and Nonlinear Control. doi: 10.1002/rnc.7504. (ID: 29748)

2024

Efimov, D., & Orlov, Y. (2024). Discretization of prescribed-time observers in the presence of noises and perturbations. Systems and Control Letters, 188(6), 105820. doi: 10.1016/j.sysconle.2024.105820. (ID: 29747)

2024

Orlov, Y., Verdes Kairuz, R., & Aguilar Bustos, L. T. (2024). Scaling technique for prescribed-time output feedback stabilization: Autonomous and non-autonomous paradigms and their comparative study. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 361(106642), 1-18. doi: 10.1016/j.jfranklin.2024.01.043. (ID: 29829)

2023

Aguilar Bustos, L. T., & Orlov, Y. (2023). Limit Cycle Generation in Van der Pol Flavored PDE Setting. IEEE Control Systems Letters, 1-6. doi: 10.1109/LCSYS.2023.3339244. (ID: 29170)

2023

Poznyak, A., & Orlov, Y. (2023). Vadim I. Utkin and sliding mode control. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 360, 12892-12921. doi: 10.1016/j.jfranklin.2023.09.028. (ID: 29165)

2023

Pilloni, A., Pisano, A., Usai, E., & Orlov, Y. (2023). Second-Order Sliding-Mode Leader-Follower Consensus for Networked Uncertain Diffusion PDEs with Spatially Varying Diffusivity. In Tiago Roux Oliveira, Leonid Fridman, Liu Hsu (Eds.), Sliding-Mode Control and Variable-Structure Systems (pp. 541-567). Springer. (ID: 29177)

2023

Andrievsky, B., Orlov, Y., & Fradkov, A. L. (2023). Output Feedback Control of Sine-Gordon Chain over the Limited Capacity Digital Communication Channel. Electronics, 12(10), 2269-2295. doi: 10.3390/electronics12102269. (ID: 29167)

2023

Gutierrez Oribio, D., Orlov, Y., Stefanou, I., & Plestan, F. (2023). Robust boundary tracking control of wave PDE: Insight on forcing slow-aseismic response. Systems and Control Letters, 178(105571), 1-13. doi: 10.1016/j.sysconle.2023.105571. (ID: 28886)

2023

Andrievsky, B., Orlov, Y., & Fradkov, A. L. (2023). On robustness of the speed-gradient sampled-data energy control for the sine¿Gordon equation: The simpler the better. Communications in Nonlinear Science and Numerical Simulation, 117(106901), 1-13. doi: 10.1016/j.cnsns.2022.106901. (ID: 29173)

2022

Orlov, Y., Verdes Kairuz, R., & Aguilar Bustos, L. T. (2022). Prescribed-Time Robust Differentiator Design Using Finite Varying Gains. IEEE Control Systems Letters, 6, 620-625. doi: 10.1109/LCSYS.2021.3084134. (ID: 28386)

2022

Verdes Kairuz, R., Orlov, Y., & Aguilar Bustos, L. T. (2022). [HTML] from sciencedirect.com Robust observer design with prescribed settling-time bound and finite varying gains. European Journal of Control, 68(100667), 1-9. (ID: 28389)

2022

Orlov, Y. (2022). Time space deformation approach to prescribed-time stabilization: Synergy of time-varying and non-Lipschitz feedback designs. Automatica, 144(110485), 1-14. doi: 10.1016/j.automatica.2022.110485. (ID: 28388)

2022

Orlov, Y., & Krstic, M. (2022). Comments on `Design of Controllers with Arbitrary Convergence Time¿. Automatica, 142(110429). doi: 10.1016/j.automatica.2022.110429. (ID: 28387)

2021

Verdes Kairuz, R., Orlov, Y., & Aguilar Bustos, L. T. (2021). Prescribed-time stabilization of controllable planar systems using switched state feedback. IEEE Control Systems Letters, 5(6), 2048-2053. doi: 10.1109/LCSYS.2020.3046682. (ID: 28385)

2020

Utkin, V. I., Poznyak, A., Orlov, Y., & Polyakov, A. (2020). Conventional and high order sliding mode control. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 357(15), 10244-10261. doi: 10.1016/j.jfranklin.2020.06.018. (ID: 26187)